Chapter 2

Multimedia Networks: Requirements and Performance Issues

Yu-Chen Kuo

- ★ Identify important performance parameters for distributed multimedia applications
- See Fig. 2-1 pp.20
- □2.2 Peer-to-Peer and Multipeer Communication
 - unicast
 - -peer to peer
 - -client-to-server applications
 - home-shopping, banking, video-on-demand
 - multicast
 - —peer to multipeer (1 to n / 1 to all :broadcast) distance-learning, teleseminar
 - multipeer to multipeer
 - teleconference
 - See Table 2-1 pp. 21

Figure 2–1 Evolution of Networked Services

Yu-Chen Kuo

Туре	Description	Interaction	Data Flow	Accessibility
CSCW	All can send/receive data	Dynamic	N to N	Controlled
Virtual Cafe	All can send/receive data	Dynamic	N to N	Uncontrolled
Broadcasting	One sender, many receivers	Static	1 to N	Controlled
Monitoring	One receiver, many senders	Static	N to 1	Controlled

 Table 2–1
 Characteristics of Selected MIM Applications

2.3 Network Performance Parameters for Multimedia

Throughput

network effective bit rate or effective bandwidth physical bit rate - various overheads (network congestion, bottlenecks, node/line faults) e.g., ATM(155Mbps)-9.5%overhead \cong 136Mbps

Error Rate

-bit error rate (BER) : $10^{-9} \sim 10^{-12}$ (fiber), 10^{-7} (satellite)

- -packet error rate (PER)
- -frame (cell) error rate : ATM
- -more important for electronic funds application less important for vidéo application

Delay (End-to-End Delay) :

the time for transmitting a block from sending to receiving

- -Transit delay : satellite link
- Transmission delay:

transmission time + processing time bit rate of network routing+buffering

- Network delay: Transit delay + Transmission delay
- Interface delay : setup connection (dialup)
 See Fig. 2-2 pp. 23
- Round-trip delay
- total time between sending a block and receiving an ack.
- connection-oriented networks (TCP/IP) for retransmission (time out)

Yu-Chen Kuo

- Delay variation or Jitter
 - -end-to-end delay may be varied
 - -uniform delay
 - -upper limit on permissible jitter

2.4 Characteristics of Multimedia Traffic Sources audio, video, data, bit-mapped image, graphics

- Throughput variation with time
 - -constant bit rate (CBR)
 - CD-ROM
 - constant bit rate transmission (ISDN)
 - variable bit rate (VBR)
 - MPEG Video
 - burst traffic
 - measure by peak traffic rate / mean traffic rate
 - carefully control when transmission even in CBR/VBR network

Time dependency

-multimedia traffic generated in real time

- video conference
- -end -to-end delay must keep very low

unlike VOD, video can be transferred before needed

- Bidirectional Symmetry
 - -asymmetric traffic
 - ◆down stream traffic ≠ upstream traffic

VOD downstream > = upstream

-symmetric traffic

down stream traffic = upstream traffic
 peer-to-peer teleconference

2.5 Factors that Affect Network Performance factors for throughput, error rate, delay, delay jitter

- Throughput performance factors
 - -nodes or link failures

packet delay/loss, congestion on other nodes

- -congestion
 - demand network capacity >> availability
 - heavy traffic
 - bottleneck
 - \Rightarrow throughput \downarrow when network load \uparrow
 - drop packets when buffers overflow
 - network management start to decrease traffic on certain links
 - heavily nodes become bottlenecks

-bottlenecks

- node/link failures
- inadequate link/node capacity
- -buffer capacity
 - •may inadequate to send or receive in video app.
 - See Fig. 2-3 pp 27
 - overflow/underflow
- -flow control
 - limit data rate to prevent data loss at receive side

- Issues in Network Error Performance
 - -individual bit errors
 - rare in today's network
 - detect by CRC checksum
 - retransmission by intermediate node or sender
 - -packet loss
 - connection oriented
 - setup connection first
 - acknowledge for each packet
 - easy to detect packet loss by receiver
 - retransmission by sender

- connectionless (best effort)
 - hard to detect
 - due to insufficient buffer
 - handle by upper applications

-out-of-order packets

- data is divided into some small packets
- individually sending packets
- rearrange those packets according to the sequence

- Network Delay Performance Issue
 - inevitable (satellite one-way transit delay:
 0.25 sec)
 - Congestion
 - Transmission error
 - -Physical problem in lines or switching node
 - ⇒ use buffer at each end to smooth out delay problem

□2.6 Multimedia Traffic Requirements for Networks

*network requirements for multimedia traffic

- Throughput requirements
- high transmission bandwidth requirement to handle busty real-time video and audio traffic

⇒ insufficient bandwidth

 \rightarrow longer end-to-end delay, packet loss

 high storage bandwidth requirement sufficient buffer capacity to receive incoming data

input data rate $r \rightarrow$ buffer \rightarrow output data rate s buffer data when r > s, and overcome delay when s > r streaming requirement (continuous)
 network to meet the streaming requirement (1.5Mbps)
 network capacity >= aggregate bit rate of streams for many streaming

- Reliability (error control) requirements
 - difficult to precisely quantity error control
 - multimedia applications can tolerant some errors
 - losing video /audio is undetectable by human
 - dropped packets are more noticeable in audio than in video
 - dropped packets are more noticeable in text than in video/audio
 - handle packet loss / error cause some delays; in real-time application delay is more important than error

- Delay requirements
 - —asynchronous network
 no upper limit on delay → delay jitter may be larger
 - synchronous network a fixed predictable delay \rightarrow delay jitter =0
 - isochronous

delay between T and T+dT \rightarrow delay jitter <= dT

% delay jitter sometimes is more important than end-toend delay

delay jitter \rightarrow arrival rate \rightarrow buffer capacity \rightarrow real time (Qos)

 Quality of Service (QoS)
 how well a network performs in dealing with multimedia application

QoS requirements (parameters)

- max allowable delay
- delay jitter
- throughput
- error rate

e.g., real-time conferencing may impose QoS requirements on latency and throughput; others may require zero error rate

 \rightarrow how well the network is able to meet the QoS requirements for a application

- New QoS concepts
 - resource reservation and scheduling request pattern is known in advance (period)
 - resource negotiation

negotiate the requester and offer a lower QoS when overload

- admission control reject the application whose QoS requirement is so high that network can meet it
- Guaranteed QoS

 network status → meet application QoS
 requirement