Chapter 1

Introduction to Multimedia

- ★ What is the multimedia?
 - Multimedia concerns the **representation** of mixed information—text, data, image, audio, and video—as digital signals.
- ⇒ local multimedia applications (Authoring)
 Multimedia **communications** concerns the technology to **manipulate** and **control** the signals by computer and to transmit them across a networked communications channel.
- ⇒ networked multimedia applications

- Four characteristics of multimedia systems
 - 1. computer controlled (representation, product, store)
 - 2. integrated (computer, network, storage integrations)
 - 3. digital
 - 4. interactive (to final user)

- □1.1 The Internet and Multimedia Communication
- WWW → having experienced multimedia communication
- HTML document: text, image, speech, audio, video
- Deficiencies of the Internet for multimedia communication
- New Information Superhighway (not only wide-band network but also access control)

- □1.2 Continuous and Discrete Media
- continuous media (temporal media, time dependent)
 - audio, video, live TV broadcast, moving images
 - real-time, synchronization
- discrete media (time independent)
 - formatted / unformatted text, still images, graphics
 - time invariant

(not change if sent now or ten minutes from now)

- □1.3 Digital Signals
- ★ Why need to digitize information?
 - easy to handle
 all digital information can be refereed to a sequence of bits and can be handled in the same way
 - easy to recover (error free)

- ★ Digitize signal : sampling and quantization + encoding
- 1.3.1 Sampling
 - —measure analog signal at regular time intervals T {s(T), s(2T), ..., s(nT)}
 - -frequency 1/T
 - Nyquist Theorem :
 sample frequency >= 2 xmax signal frequency
 e.g., speed signal 3kHz → sample rate at least 6kHz

- 1.3.2 Quantization and Encoding
 - represent the sampled values in a discrete set of values and encode them into a bit strings
 - e.g., quantized by 3-bit code ⇒ 8 distinct grade level
 - See Figure 1-2 pp.4

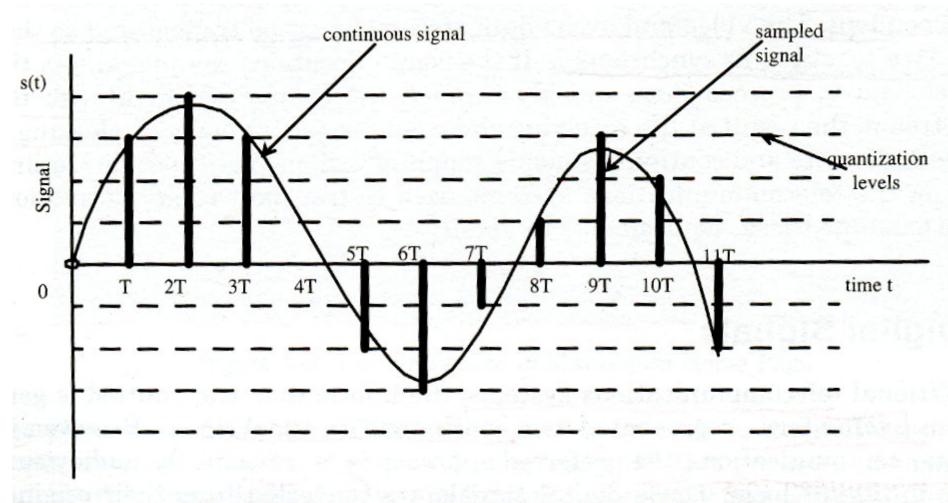


Figure 1-2 Analog Signal, Sampled and Quantized

- 1.3.3 Bit rate
 encoded bit rate = sampling rate x# quantization bit
- the bit rate of telephone speech with sampling rate 8kHz and using 8-bit quantizer= 8000x8 =64kbps
- the bit rate of compact audio disk for stereo with sampling rate 44.1kHz and using 16-bit quantizer = 44100×16 ×2 =1410kbps
 See Table 1-1 pp.5

Format	Sampling rate (kHz)	Bandwidth (kHz)	Frequency Range (Hz)	Bit rate (kbps)
Telephony	8.0	3.0	200 - 3,200	64
Teleconferencing	16.0	7.0	50 - 7,000	256
Compact disk	44.1	20.0	20 -20,000	1,410
Dig Audio Tape	48.0	20.0	20 - 20,000	1,536

Table 1-1 Digital Audio Formats [6]

- □1.4 Still images
- pixel: smallest single unit whose color or brightness can be controlled
- 8-bit pixel can represent 256 different brightness (mono) or color and brightness (color) values
- Number of bits: for an image with resolution 1024×768 and 24-bit pixel, is 1024×768×24=18.874Mbits
- Transmission time = 18874000/14400 = 21.84 min
- ★ How to improve ?

- 1. Send the image over a fast channel (T1=1.544Mbps)
- 2. Reduce the number of *bits per pixel* (24→16*bpp*)
- 3. Reduce the resolution (fewer pixel / line or line / picture)
- 4. Remove the redundancy in the display
- ⇒ image compression combine approaches 2, 3 and 4

□1.5 Text and Graphics

- Plain text: 64(line)×80(chars)×8-bit
- Formatted text : 64(line)×80(chars)×16-bit
- Graphics (pixel) ⇔ image (pixel)
 - -revisable

not revisable

— object

—bitmaps

two points→line center and radius→circle

- —computer made real world (capture)
- less storage

- □1.6 Moving Graphics and Image
 - temporal sequences of graphical pictures;
 frames
 - frame rate (# of frame/sec)
 - -25~30 fps (at least 16 fps for smooth motion)
 - Number of bits per second:
 - $360(pixels)\times288(line)\times24(bit)\times30(frame rate)$
 - =74.65Mbps

- □1.7 Encoding and Decoding
 - analog ⇒ A/D ⇒ digital signal
 - digital ⇒ D/A ⇒ analog signal
 See Fig. 1-3
 - data compression
 - -lossless
 - —lossy (distortion)

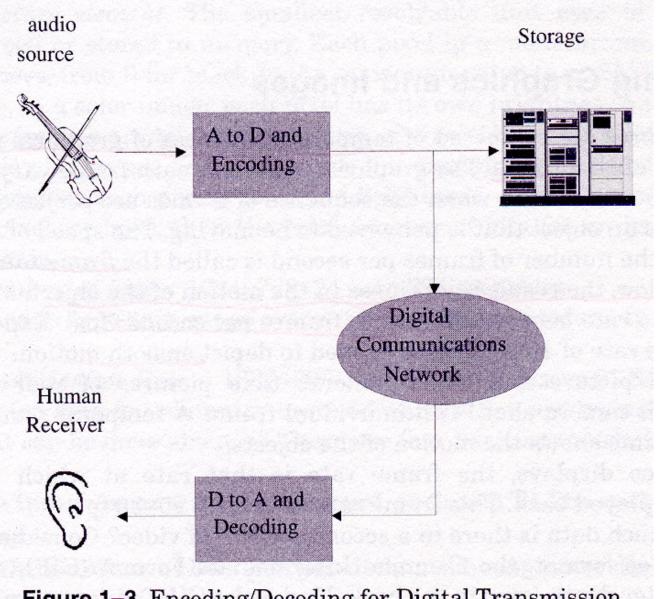


Figure 1-3 Encoding/Decoding for Digital Transmission

- compression method varies according to different media
- evaluation of compression method based on human audiovisual
 - * speech: frequency bound 40~1600Hz
 - ⇒ filter the signal exceed the range
 - * video: 24→16bpp or 30fps →16 fps

- □1.8 Bandwidth vs. Compression
- Compression

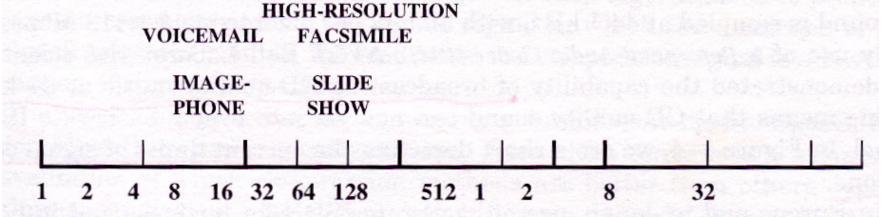
```
telephone speech standard bit rate 64Kbps (1972) \rightarrow 32Kbps (1984) \rightarrow 16Kbps (1992) \rightarrow 8Kbps (19??)
```

See. Table 1-2 for International compression standards and Fig. 1-4 for the current compression limits pp.10

- Bandwidth
 - ISDN → Broadband-ISDN
 - V.34 (33.6Kbps) → V.90 (64Kbps)
 - LAN (10Mbps) → ATM (622Mbps)
 - 1100 Gbps over optical fibers

Standard	Bit rate	Application	
G.721	32 kbps	Telephony	
G.728	16 kbps	Telephony	
G.722	48-64 kbps	Teleconferencing	
MPEG-1 (audio)	$128-384~\mathrm{kbps}$	2-channel audio	
MPEG-2 (audio)	320 kbps	5-channel audio	
JBIG	0.05 - 0.10 bpp	Binary images	
JPEG	0.25-8.0 bpp	Still images	
MPEG-1,2 (video)	1-8 Mbps	Video	
Px64	64-1,536 kbps	Videoconferences	
HDTV	17 Mbps	Advanced TV	

Table 1-2 International Standards for Telephony, Audio, and Video [8]


HDTV

AUDIO CONFERENCE

> NETWORK TELEPHONY

MOVIES ON COMPACT DISC

VIDEO CONFERENCE

KILOBITS PER SECOND

MEGABITS PER SECOND

Figure 1–4 Signal Compression Capabilities [7]

Yu-Chen Kuo

□1.9 Project TeleTeaching an example for networked multimedia application (distance-learning)See Fig. 1-5 pp. 13

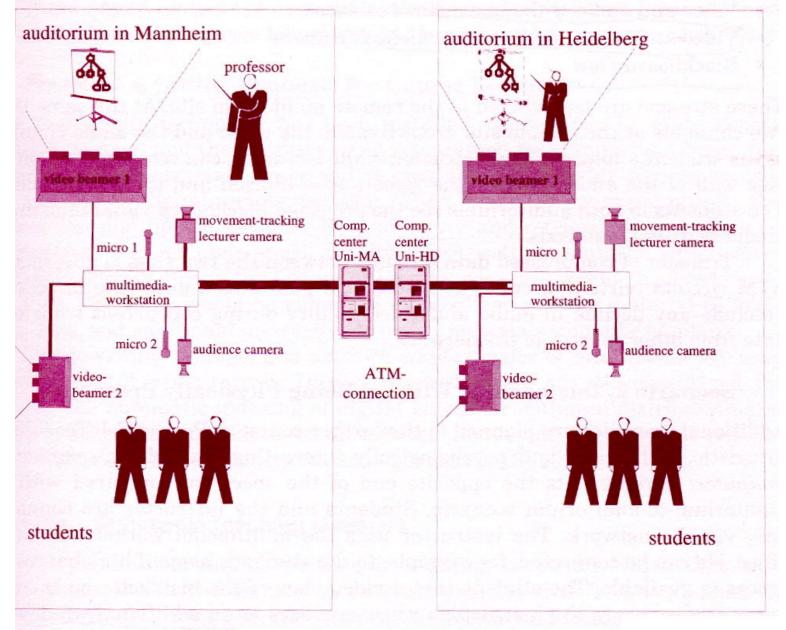


Figure 1-5 TeleteachingInfrastructure

Yu-Chen Kuo