802.11 Power Saving Issues

Prof. Yu-Chee Tseng Dept. of Comp. Sci. & Infor. Eng. National Chiao-Tung University (交通大學 資訊工程系 曾煜棋) modified by 郭育政

1

Power-Related Issues

Backgrounds

- Battery is a limited resource in any portable device.
 - becoming a very hot topic is wireless communication
- Power-related issues:
 PHY: transmission power control
 MAC: power mode management
 Network Layer: power-aware routing

Transmission Power Control

- tuning transmission energy for higher channel reuse
- example:
 - A is sending to B (based on IEEE 802.11)
 Can (C, D) and (E, F) join?

Power Mode Management

- doze mode vs. active mode
- example:
 - ♦ A is sending to B (based on 802.11)
 - Does C need to stay awake?

Power-Aware Routing

- routing in an ad hoc network with energy-saving in mind
- Example: in an ad hoc network

Power Mode Management in IEEE 802.11

C.	Doze mode₊	Receive mode₽	Transmit mode₽
Lucent ORiNOCO WLAN PC Card4	0.05 Watte	0.9 Watte	1.4 Watt _*

Table 1 Doze/receive/transmit powers of Lucent ORiNOCO Wireless LAN PC Card

(data from http://www.agere.com, dated September 13, 2000).

Problem Definition

Power modes in IEEE 802.11 PS and ACTIVE

Problem Spectrum:
 infrastructure
 ad hoc network (MANET)
 >single-hop
 >multi-hop ad hoc networks

Infrastructure Mode

two power modes: active and powersaving (PS)

Details

AP monitors modes of mobile hosts.

- ✤ A host always notifies AP its mode.
- Periodically, AP transmits beacons.
 - A PS host only listens to beacons to check possible coming packets.

signaled by traffic indication map (TIM)

Ad Hoc Mode (Single-Hop)

PS hosts also wake up periodically. interval = ATIM (Ad hoc) window

Details

In each ATIM window

- every host contends to send a beacon
 - >for clock synchronization
 - inhibiting (one beacon in each interval)
- contends to send ATIM to wake up PS hosts with buffered packets

After the ATIM window, contend to send data frames by CSMA/CA

Problems with Multi-Hop MANET

Clock Synchronization:

A difficult job due to communication delays and mobility

Neighbor Discovery:

- by inhibiting other's beacons, hosts may not be aware of others' existence
- Network Partitioning:
 - with unsynchronized ATIM windows, hosts with different wakeup times may become partitioned networks 14

Network-Partitioning Example

What Do We Need?

- PS protocols for multi-hop ad hoc networks
 - Fully distributed
 - No need of clock synchronization (i.e., asynchronous PS)
 - Always able to go to sleep mode, if desired

Features of Our Design

- Guaranteed Overlapping Awake Intervals:
 - two PS hosts' wake-up patterns always overlap

no matter how much time their clocks drift

- Wake-up Prediction:
 - with beacons, derive other PS host's wake-up pattern based on their time difference

BI: beacon interval (to send beacons)

- AW: active window
 - BW: beacon window
 - MW: MTIM window (for receiving MTIM)
 - listening period: to monitor the environment

Three Protocols

- Based on the above structure, we propose three protocols
 - Dominating-Awake-Interval
 - Periodical-Fully-Awake-Interval
 - Quorum-Based

P1: Dominating-Awake-Interval

intuition: impose a PS host to stay awake sufficiently long

"dominating-awake" property

 $AW \ge BI / 2 + BW$

Problem:

only dectectable in ONE direction
 Adjustment:

- odd beacon interval:
 - Active Window = BW + MW + listening
- even beacon interval:
 - Active Window = listening + MW + BW

Characteristics

dominating awake

wake-up ratio < 1/2</p>

sensibility

A PS host can receive a neighbor's beacon once every two beacon intervals.

suitable for highly mobile environment

P2:

Periodical-Fully-Awake-Interval

Basic Idea:

- In every T intervals, stay awake in one full interval.
- ♦ wake-up ratio $\cong 1/T$
 - Compared to 1/2 of protocol 1
- Two types of beacon intervals:
 - Low-power interval
 - Fully-awake interval (in every T intervals)

P3: Quorum-Based

Quorum Sets:

- Two quorum sets always have nonempty intersection.
- (used here to guarantee detectability)
- A matrix example:

Example (2D matrix quorum)

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

- Host A's quorum intervals
- Host B's quorum intervals

Non-quorum intervals

Host A' quorum intervals

Overlapping Property

Overlap no matter how clocks drift

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

0	1	2	3
4	5	6	7
8	9	10	11
12	13	14	15

Host B's quorum intervals

Optimal Quorum Size

Optimal quorum size: k, where k(k-1)+1=n and k-1 is a prime power (K≈√n)

Optimal Quorum Systems

- Near optimal quorum systems
 - Grid quorum system
 - Torus quorum system
 - Cyclic (difference set) quorum system
- Optimal quorum system
 - FPP quorum system

Cyclic (difference set) quorum

- System
 Def: A subset D={d1,...,dk} of Zn is called a difference set if for every e≠0 (mod n), there exist elements di and dj∈D such that di-dj=e.
- {0,1,2,4} is a difference set under Z8
- { {0, 1, 2, 4}, {1, 2, 3, 5}, {2, 3, 4, 6}, {3, 4, 5, 7},
 - {4, 5, 6, 0}, {5, 6, 7, 1}, {6, 7, 0, 2}, {7, 0, 1, 3} } is a cyclic (difference set) quorum system

FPP quorum system

- FPP: FPP Finite Projective Plan
- Proposed by Maekawa in 1985

- For solving distributed manage languages
- Constructed with a hypergraph
- Also a Singer difference set quorum system

E-Torus quorum system

Summary

Protocol	Numbers of beacons	Active ratio	Neighbor sensitivity
Dominating	1	1/2+BW/BI	BI
Periodical	1	1/T	T*BI/2
Quorum	(2n-1)/n ²	(2n-1)/n ²	(n²/4) * BI

BI: length of a beacon interval

AW: length of an active window

- BW: length of a beacon window
- MW: length of an MTIM window
- T: interval between the fully awake periods
- n: length of the square

Summary

- Identify the problems of PS mode in IEEE 802.11 in multi-hop ad hoc networks.
 - clock drifting, network-partitioning
- Propose several PS protocols
- Connecting this problem to quorum issue in distributed systems.

Multicast group 睡眠週期同步機制

◆CRT (中國餘式定理)

- > Let p1, p2, ..., pm be m positive integers which are pairwise relatively prime, i.e. gcd(pi, pj)=1for $1 \le i < j \le m$.
- ≻Let $N=p1\times p2\times ...\times pm$ and let r1, r2, ..., rm be m integers, where ri < pi, $\forall 1 \le i \le m$. Then, there exists a solution *I* solving the system of simultaneous congruences $I \equiv r1 \pmod{p1} \equiv r2 \pmod{p2} \equiv ... \equiv rm \pmod{pm}$.

Multicast group 睡眠週期同步機制 ◆CRT (中國餘式定理) [CRT-MAC]

Multicast group 睡眠週期同步機制

Busy waiting approach

